
Proof of Backhaul: Trustfree Measurement of Broadband
Bandwidth

Abstract
Recent years have seen the emergence of decentralized wireless

networks consisting of nodes hosted by many individuals and small

enterprises, reawakening the decades-old dream of open network-

ing. These networks have been deployed in an organic, distributed

manner and are driven by new economic models resting on tok-
enized incentives. A critical requirement for the incentives to scale

is the ability to prove network performance in a decentralized

“trustfree" manner, i.e., a Byzantine fault tolerant network telemetry

system.

In this paper, we present a Proof of Backhaul (PoB) protocol

which measures the bandwidth of the (broadband) backhaul link

of a wireless access point, termed prover, in a decentralized and

trustfree manner. In particular, our proposed protocol is the first

one to satisfy the following two properties: (1) Trustfree. Bandwidth
measurement is secure against Byzantine attacks by collaborations

of challenge servers and the prover. (2) Open. The barrier-to-entry
for being a challenge server is low; there is no requirement of having

a low latency and high throughput path to the measured link. At

a high-level, our protocol aggregates the challenge traffic from

multiple challenge servers and uses cryptographic primitives to

ensure that a subset of challengers or, even challengers and provers,

cannot maliciously modify results in their favor. A formal security

model allows us to establish guarantees of accurate bandwidth

measurement as a function of the maximum fraction of malicious

actors.

We implement our protocol with challengers spread across geo-

graphical locations. Our evaluation shows that our PoB protocol

can verify backhaul bandwidth of up to 1000 Mbps with less than 8%

error using measurements lasting only 100 ms. The measurement

accuracy is not affected in the presence of corrupted challengers.

Importantly, the basic verification protocol lends itself to a minor

modification that can measure available bandwidth even in the

presence of cross-traffic.

Finally, the security guarantees of our PoB protocol output are

naturally composable with “commitments" on blockchain ledgers,

which are commonly used for decentralized networks.

1 Introduction
Decentralized networks have been in the making for decades. Start-

ing with Software Defined Networking [30, 31] to simplify the

hardware and open software [40] to facilitate application devel-

opment, finally real-world deployments of decentralized Internet

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

CCS ’23, Anonymous Submission, 2023
© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-8454-4/21/11. . . $15.00

https://doi.org/10.1145/3460120.3484566

Service Providers (ISPs) [3] and decentralized Mobile Network Op-

erators (MNOs) [20] have emerged. These decentralized networks

have been made possible by the convergence of several engineering,

business, and policy developments: the availability of cheap hard-

ware forWiFi access points, and now even cellular base stations; the

availability of cloud-native orchestration and AAA software [34];

and the availability of lightly licensed spectrum for cellular com-

munication [18]. However, the real breakthrough in deployment

comes with the emergence of a token-driven incentive ecosystem

to bootstrap network growth and make individual hosts provide

good network service. The leading exponent of such growth is the

Helium network [20], which is a multi-RAT (radio access technolo-

gies) network supported by hundreds of thousands of “hotspots”

hosted by individuals.

But a new engineering challenge has emerged – we need to

design secure and decentralized network telemetry. In centrally

managed networks, network telemetry is used for performance

measurement and subsequent optimization. In contrast, network

telemetry plays a more pivotal role in decentralized networks. It is

now needed to ensure that the network nodes provide the service

that they are being paid for. For this purpose, there are two new

requirements for decentralized network telemetry:

• Trustfree. The protocol is secure against Byzantine attacks
by the parties involved.

• Open. The barrier-to-entry for servers participating in de-

centralized telemetry is low. In particular, any node with

a “reasonably good" internet connection should be able to

participate.

The measurements that we get as the output of such trustfree and

open network telemetry protocols can be viewed as a cryptograph-

ically secure proof of appropriate network performance.

In this paper, we focus on measuring a specific network perfor-

mance parameter which is of central importance in decentralized

wireless network deployments. In such deployments, users are re-

quired to get a broadband connection with appropriate bandwidth,

as a backhaul for the wireless access point. But how do we know

that the user has indeed set up a good backhaul connection? Can

we simply use any of the existing techniques from the large body

of literature, spanning over decades, on bottleneck link-throughput

measurement? It turns out none of the existing tools is applicable

for our setting; below we point out shortcomings of prominent

techniques and clarify our contributions.

Comparison with speedtest. Speedtest (speedtest.net) is a state-
of-the-art bandwidth testing tool widely used globally. Whenever

a user (the “prover") sends a measurement request, a nearby server

is selected from a centralized challenger server pool. The selected

server generates traffic continuously until the target link is satu-

rated. This requires the challenger server to have a high bandwidth,

low latency, low packet loss link to the prover; this represents a

high barrier to becoming a challenger. Furthermore, the measure-

ments rely on the rates of sending packets from challengers and

https://doi.org/10.1145/3460120.3484566
speedtest.net

acknowledgements from the prover – an untrustworthy prover or

challenger can adversely impact the measurement. Speedtest and

similar architectures are unsuited for trustfree network telemetry.

Traffic aggregation. One way to allow more challengers to partic-

ipate in the telemetry (and thus being more open) is to aggregate

traffic from multiple challengers. Such aggregation removes the

requirement of high capacity for a single server to measure high-

bandwidth links, by uniting a group of servers to generate sufficient

traffic in parallel. While this technique can improve the accuracy

(e.g., recent works [1, 9, 51, 52]), the method is not trustfree: a

Byzantine prover can readily manipulate the measurement results

with no check or balance.

Interactive Measurement. To eliminate the need of trust on the

prover, challengers should interact with other parties in the network

to generate measurements. Popular interactive telemetry tools such

as traceroute [23] and pathchar [24] use the timing information ob-

tained by combining the Internet control message protocol’s (ICMP)

time-to-live (TTL) and packet dropped messages to estimate link

performance over the Internet. In particular, challengers estimate

the round-trip time (RTT) to the two end-points of the link to be

measured, the throughput is derived by dividing the packet size

by the difference of RTT. To further increase accuracy, packets of

different sizes can be transmitted and the measurements can be

aggregated through linear regression [17, 24]. Secure measurement,

resistant to collusion between the prover and challengers, is not

guaranteed in these protocols.

Our contributions. We present the first multichallenger PoB pro-

tocol for measuring backhaul bandwidth that satisfies the aforemen-

tioned trustfree and open properties, c.f., §3. Broadly, the protocol

is built by implementing the following ideas:

(1) Traffic aggregation.We simultaneously send challenge traffic

from multiple challengers to the prover. The duration of

the challenge is chosen to be sufficiently high to ensure

that traffic from all the challengers queues at the prover’s

backhaul link.

(2) Unforgeable probe. The challengers are selected randomly

from a larger pool and each sends digital signatures as traffic,

so that no other party can forge the measurement probe.

Furthermore, to limit the influence of any one challenger,

we limit the amount of challenge traffic that can come from

a single challenger.

(3) Short witness. The prover can send a short message to the

challengers to prove that it has received appropriate amount

of data. As will be seen below, our security considerations

require us to use a partially verifiable hash. For this purpose,

we use a Merkle tree [38].

(4) Robust timing measurement. We estimate the RTT for the

overall challenge by taking the median of the RTT measured

by different challengers.

We implement these steps and experimentally validate the design

choices to identify the best performing configuration; see Figure 1

for a depiction. The main contribution of this work is the trustfree

property of the proposed protocol – it is secure under a rigorous

threat model that we outline in §4. Our proposed protocol is the

first one that can measure bandwidth of hundreds of Mbps without

requiring any specialized server with high throughput and low

latency for challengers in the trustfree setting. We further extend

this protocol to measure available bandwidth in the presence of

cross-traffic, making it a truly distributed “speedtest.”

...

Prover

Backhaul link
1k ...

1k 1k ...

1k ...

111

Verifier

RTT Measurements
 Packets Receipt

1k ...

1k ...

111

Internet

Router

...

...

Challengers

Figure 1: The multichallenger PoB Protocol.

We analyze the security of our multichallenger PoB protocol

under a formal threat model which allows any subset of parties (up

to 1/3 challengers collaborating with the prover) to maliciously de-

viate from the protocol. Since our probe is unforgeable, a corrupted

prover still must get probe packets from the challengers. However,

corrupted challengers, too, can modify the packet flow using two

attacks: (i) the withholding attack where a corrupted challenger

does not send probe packets; and (ii) the rushing attack where a

corrupted challenger coordinates with the corrupted prover to send

the packets or their information quickly without using the chal-

lenged link. To compensate for the withholding attack, we must

send more packets than the link bandwidth to have sufficient traffic

even after withholding attack. To compensate for the rushing at-

tack, we multiply the actual measured bandwidth with a correction

factor derived from the bound of bandwidth inflation to arrive at

the guaranteed bandwidth. In addition, corrupted challengers can

modify their outputs needed for verification. Specifically, they may

report wrong RTT or they may claim modified packet data. We

circumvent the former attack by taking a median of the measure-

ments. To circumvent the latter attack, we use a Merkle tree which

allows us to verify the consistency of the hash response from the

prover with the data of uncorrupted challengers, without requiring

correct data from the corrupted ones.

Overall, denoting themaximum fraction of corrupted challengers

by 𝛽 , we show that for 𝛽 < 1/31, our protocol does not allow any

prover to inflate the bandwidth and allows an honest prover to

establish at least a fraction (1 − 2𝛽)/(1 − 𝛽) of the true bandwidth.
Design variations using different primitives. Our main pro-

tocol assumes availability of digital signatures and nothing more.

Different variants of this protocol are possible when different re-

sources are available; we explore these variants in Appendix A.

Specifically, we observe that (1) the protocol can achieve a higher

accuracy of (1 − 𝛽) using TCP packets if a fairness property holds,

as this prevents corrupted challengers from reporting deviating

bandwidths higher than the majority; (2) the accuracy is reduced

1
The adversarial threshold can be 1/2 if the verifier has access to a timer. See the

discussion in §4.2.

2

Technique Secure Challenger BW < Backhaul BW Accuracy
Pathchar [17, 24, 35] ✗ ✓ Low

Packet dispersion based [12, 13, 33, 45] ✗ ✗ –
Secure BW estimation [28, 48, 54] ✓ ✗ –

Multichallenger PoB ✓ ✓ High

(a)

Backhaul BW Challenger BW Challenge Data Attack Measured BW Guaranteed BW
(Mbps) (Mbps) (MB) (Error %) (Mbps)
250 25 3.44 – 246 (1.6%) 184

500 20 6.86 – 475 (5%) 356

750 75 10.31 – 705 (6%) 529

1000 100 13.75 – 921 (8%) 691

250 32 3.44 Rushing 331 (0.6%) 249

250 32 3.44 Withholding 241 (3.6%) 181

(b)

Figure 2: (a) Comparison of our multichallenger PoB protocol with prior-art techniques. (b) Summary of our performance
results with 10 challengers. We perform attacks with 2 corrupted challengers.

to (1 − 3𝛽)/(1 − 𝛽) when digital signatures are not used, due to

the deniability of the packets delivery; (3) by limiting the access of

corrupted challengers to additional links with higher bandwidth,

the feasibility of rushing attacks is eliminated. Additionally, by

implementing a shuffled packet creation phase, the effects of other

attacks can be minimized and optimal accuracy can be achieved.

Implementation and evaluation. To convert the idealized pro-

tocol into a practical tool, we implement a variant of our protocol

designed to address real-world issues (§5) and thoroughly evalu-

ate its performance (§6). For instance, measuring links with 100

Mbps and higher bandwidth (commonplace in broadband services)

requires latency measurements with an accuracy that is hard to

achieve due to jitter in the Internet; we elaborate on overcoming

this challenge in §6.1.

In our evaluation, we focus on the loss of measurement accu-

racy when using multiple challengers and traffic aggregation; in

particular, we consider the loss of accuracy due to: (i) time syn-

chronization errors and network jitter; (ii) computation time delays

due to the use of digital signatures, hash computation, verifica-

tion, and Merkle trees; and (iii) geographically spread challengers

with heterogeneous capabilities. We also implement rushing and

withholding attacks to illustrate that the security guarantees of the

theory hold in practice. Our main experimental results are summa-

rized in Figure 2. We report both the actual measured bandwidth

and the output of our protocol – the guaranteed bandwidth – which

is obtained by applying the correction factor (1 − 2𝛽)/(1 − 𝛽).

2 Background and Related Work

Bandwidth estimation. The term bandwidth in the context of data

networks quantifies the amount of data a network path can transfer

per unit of time. Two metrics related to bandwidth are extensively

investigated in the literature, the maximum possible data rate called

capacity and the maximum available data rate called available band-
width [45]. Packet dispersion techniques [12, 13, 29, 33, 47] are

widely used to measure the capacity of the bottleneck link in a

network path. Some of the techniques to measure available band-

width are outlined in [1, 4, 11, 22, 25, 26, 36, 37, 46, 49, 51, 52]. Of

these, tools such as Pathload [25, 26] and Pathchirp [46] create a

short traffic load with different stream rates and observe the differ-

ences of one-way delay to adjust estimations. The state-of-the-art

commercial tool Speedtest[4] employs a pool of servers with high

bandwidth around the world to generate TCP traffic enough to

saturate available bandwidth of the target link for a fixed duration.

To improve accuracy, Speedtest and recent work (e.g., FastBTS[52])

leverage concurrent connections to generate TCP traffic in parallel.

Swiftest[51] explores UDP to address limitations incurred by TCP-

based methods such as slow start. Since bandwidth measurements

play a critical role in optimizing centralized system performance

and incentivizing decentralized services, other works shed light

on the security of bandwidth measurements such as addressing

inflation attacks in packet dispersion [28, 54]. Secure bandwidth

estimation tolerating malicious parties in peer-to-peer networks

has been discussed in [48], where every participant in the network

evaluates the bandwidth of others and the results from all parties

are combined into one consensus vector using principal component

analysis. This scheme only obtains opportunistic observations dur-

ing normal operations, and any node with high bandwidth cannot

get fully appraised since all the other nodes are constrained by

their own bandwidth. In another direction, [19] proposes a proof

system for network telemetry for remunerating the relays in Tor

network in proportion to the amount of data they transmit. The

PoB proposed in this paper is aimed at measuring the backhaul

bandwidth of end nodes in the Internet (e.g. WiFi access points and

base stations). Further, we place no requirement on the bandwidth

of the nodes measuring the backhaul; it can be much less than the

backhaul bandwidth.

Per-hop capacity estimation. Of all the bandwidth estimation

techniques in literature, [17, 21, 23, 24, 32, 35, 42] are closest to our

work. These techniques can measure capacity for any link in an

end-to-end path and so can be used to measure the prover backhaul,

which is our goal. Traceroute [23] and pathchar [17, 24] make use

of time-to-live (TTL) information in ICMP packets to control the

packet drop at different intermediate hops to measure capacity of

any link. [21, 32, 42] improve the approach used by pathchar [17,

3

24] with variable packet sizes. However these techniques require

precise timing measurements of the order of packet transmission

times. For bandwidth in 100s of Mbps, the packet transmission times

are of the order of tens of microseconds. Given the jitter in latency

over the Internet, our experiments in §6.1 reveal that such precise

timing measurements are difficult. Indeed, [21] reports errors over

20% for measuring bandwidths of 500Mbps or more.

Decentralized networks. A common feature in every decentral-

ized network deployment proposal is a proof system that can be

used to verify a particular network performance parameter. The par-

ticipants are incentivized to help in this proof system and also stand

to gain when they can establish their contribution to this parameter.

Helium [20] intends to unlock the potential of blockchains to estab-

lish a decentralized data network based on a tokenized incentive

mechanism called proof-of-coverage. Hotspots are compensated

for providing reliable coverage, to prove which challenge requests

are issued regularly to random hotspots, who in turn are required

to send beacons to other hotspots in the vicinity. Althea [50] aims

to operate as a distributed ISP providing last-mile connectivity

by creating a competitive platform and involving individual ser-

vice providers into the market. Nodes maintain a route meter and

accuracy score to assess the quality of neighbors to reach desti-

nations and filter out inaccurate connections. To jointly address

contractual and routing difficulties in inter-domain routing, Route

Bazaar [14] constructs a system to establish end-to-end connectiv-

ity agreements among mutually untrusted parties automatically.

The performance of the path is guaranteed by periodically gener-

ated forwarding proofs recorded on blockchains, which contain

information like encrypted path tags, traffic samples and timing

and throughput measurements.

3 The Multichallenger PoB Protocol

In this section, we formulate the PoB problem (§3.1), introduce main

techniques (§3.2) and describe our multichallenger PoB protocol in

details (§3.3) .

3.1 Problem Statement

We consider a system consisting of a group of end nodes such as

base stations, WiFi access points and remote servers over the In-

ternet willing to assist with backhaul bandwidth measurement. All

nodes are connected to the network core through one backhaul link,

simply referred to as backhaul from hereon, with an internal state

𝜃 representing the bandwidth of the link. We model the network

core as a single point since fiber cables usually provide extremely

high bandwidth, e.g., 100 Gbps. A PoB protocol allows a trusted

verifier to use a subset of available nodes for securely measuring

the backhaul bandwidth for a specific node called a prover, denoted
P. The verifier can not observe the internal state 𝜃P of the prover

directly. Instead, it needs to interact with the system by issuing

a challenge request to the rest of the parties. We assume that 𝑛

participants serve as challengers, denoted as {C1, · · · , C𝑛}, among

which up to 𝑓 = 𝛽𝑛 challengers are corrupted, where 𝛽 represents

the fraction of adversarial challengers.

These challengers are responsible for generating and sending

probes to the prover and output the measurements to the veri-

fier. The output of PoB protocol is an estimation of the backhaul

bandwidth of the prover. It guarantees the following two security

properties:

• Approximate completeness: When the prover is uncor-

rupted, if the protocol outputs 𝜃 ′P, the actual bandwidth of

the prover 𝜃P satisfies 𝜃
′
P ≥ 𝛼𝜃P for a constant accuracy ratio

𝛼 ∈ [0, 1].
• Soundness:The protocol will not output a bandwidth higher
than 𝜃P, even when the prover is corrupted.

Other assumptions for theoretical analysis.Our protocolmakes

use of digital signatures and collision resistant cryptographic hash

functions. These primitives are assumed to be perfectly secure. Par-

ties verify every received signature by default and ignore those

signed invalidly. We assume the network is synchronous and every

challenger has access to a synchronized clock. Each node knows

the public address and public key of others. We suppose there exists

a trusted verifier such as a blockchain to broadcast information to

the system. It is crucial to note that the assumptions made in our

theoretical analysis are for the purpose of simplification and easy

understanding. However, when evaluating our implementation, we

take into account the possible deviations from these assumptions

that may occur in real-world scenarios.

3.2 Protocol Overview

Heuristically, the protocol proceeds by randomly selecting a set of 𝑛

challengers from all the participants to send a train of probes to the

prover (Figure 1). The protocol enforces packets from different chal-

lengers to arrive at the link to be measured around the same time.

This traffic aggregation strategy effectively combines the group of

challengers to an equivalent challenger with larger bandwidth and

thereby renders the prover’s backhaul the bottleneck link.

Formally, suppose that the protocol starts at time 𝑡0, and each

challenger C𝑖 starts to send a sequence of 𝑘 packets of size 𝑏 each

at time 𝑡𝑖1, 1 ≤ 𝑖 ≤ 𝑛. We have the following two requirements:

(1) Aggregation condition. There is a 𝜃0 ≤ min(𝜃1, · · · , 𝜃𝑛) such
that the bandwidths 𝜃𝑖 of C𝑖 satisfy

𝑡0 +
𝑏

𝜃0
= 𝑡11 +

𝑏

𝜃1
= · · · = 𝑡𝑛1 +

𝑏

𝜃𝑛
. (1)

(2) Bandwidth condition. The quantity 𝜃0 satisfies

(𝑛 − 𝑓) · 𝜃0 ≥ 𝜃P . (2)

The “aggregation condition" coordinates the arrival time of packets

sent from various challengers, allowing multiple traffic flows to be

effectively aggregated andmerged into one stream at an appropriate

rate. In this way, at least (𝑛− 𝑓)𝑏 bits of data are transmitted within

the transmission time of one packet for a single challenger (𝑏/𝜃0).
Therefore, the equivalent bandwidth of the challenger group is

enlarged by at least a factor of (𝑛 − 𝑓). The “bandwidth condition"

ensures that the prover’s backhaul becomes the bottleneck link. We

assume there always exist enough potential challengers to meet

both conditions.

While honest participants are supposed to correctly report their

own bandwidth and send packets on time, corrupted parties can

violate the conditions in arbitrary ways. For instance, a corrupted

challenger can rush the packets through extra links or refuse to send
any packets.We therefore require the prover to send back a response

to all challengers on receiving (𝑛 − 𝑓)𝑘 packets as a transmission

4

receipt, since we can not expect more packets in the case of a

withholding attack (detailed in §4.1). Then challengers measure

the time it takes to transmit all these packets. Since corrupted

challengers can claim arbitrary values, the median of all reported

time is used to avoid manipulations and provide robust timing

measurement.

Cryptographic primitives. To save the bandwidth used for verifi-

cation, the prover only sends back a short witness consisting of the

hash of received packets to terminate the measurements. We define

a hash function 𝐻𝑎𝑠ℎ that takes any string as input and outputs

a deterministic fixed-length random string. When the input is a

set of messages, we assume the set will be serialized to a string to

compute the hash. For verification, we ask each challenger to verify

only packets sent by itself and employ the Merkle tree construc-

tion to enable inclusion check with only partial data. A sequence of

hashes can be aggregated using the function𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 to a single

cumulative hash. This technique reduces the verification overhead

per challenger to𝑂 (log𝑛), which can greatly decrease the response

traffic when 𝑛 is large. In addition, our protocol uses digital sig-

natures to generate unforgeable probes and ensure traceability of

bad behavior, for which the following functions are provided: a

key generation function 𝑘𝑒𝑦𝐺𝑒𝑛 which outputs a pair of secret and

public keys, a signing function 𝑠𝑖𝑔𝑛(𝑠𝑘,𝑚𝑠𝑔) that allows anyone to
sign an arbitrary message with a secret key 𝑠𝑘 , and a verification

function 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝑝𝑘,𝑚𝑠𝑔, 𝜎) that checks whether the signature 𝜎 is

derived by signing given message𝑚𝑠𝑔 using the secret key paired

with the public key 𝑝𝑘 .

Blockchain as a verifier. Our PoB protocol is triggered by a chal-

lenge request issued from a verifier, who is also responsible for

the broadcast of public parameters such as protocol start time 𝑡0
and bandwidth requirement 𝜃0. Generally, any trusted entity can

play the role of a verifier. In tokenized decentralized settings, smart

contracts supported by blockchains are a good fit to transparently

generate, broadcast protocol parameters and coordinate measure-

ment reports from multiple challengers. Implementing a version of

our protocol with blockchain as a verifier (deploying appropriate

smart contracts) is beyond the scope of this paper.

3.3 Full Protocol

The full protocol contains two phases, a measurement phase de-
scribed in Algorithm 1, where challengers generate and send pack-

ets, and a verification phase described in Algorithm 2, where the

prover constructs proofs for the verifier. Finally, the verifier outputs

the final results after verification.

Measurement phase. At the beginning of the measurement phase,

the verifier produces three public protocol parameters (𝑡0,𝑚0, 𝜃0)
and broadcasts it to all challengers, where 𝑡0 is the start time of

the protocol,𝑚0 is a random message, 𝜃0 is the global minimum

bandwidth. To participate in the measurement process, challengers

must first measure their own bandwidth 𝜃𝑖 and generate a key pair

consisting of a public key 𝑝𝑘𝑖 and a private key 𝑠𝑘𝑖 . The public key

is then sent to the verifier. The time to start sending the first packet

𝑡𝑖1 is determined by Eq. (1). The challenger C𝑖 generates a sequence
of 𝑘 packets by signing the public message 𝑚0 together with a

sequence number 𝑞 and sends them one by one to the prover with

a fixed duration 𝑏/𝜃0. The process is depicted in Figure 3, where

the 𝑞-th packet of C𝑖 is sent at time 𝑡𝑖𝑞 (see line 6 of Algorithm 1).

Algorithm 1 The Measurement Phase of PoB Protocol

1: as a challenger C𝑖
2: 𝑡0,𝑚0, 𝜃0 ← generated and broadcast by verifier

3: measure its own bandwidth 𝜃𝑖 (require 𝜃𝑖 ≥ 𝜃0).
4: generate (𝑝𝑘𝑖 , 𝑠𝑘𝑖) ← 𝑘𝑒𝑦𝐺𝑒𝑛, send 𝑝𝑘𝑖 to verifier.

5: for sequence number 𝑞 = 1, · · · , 𝑘 do
6: 𝑡𝑖𝑞 ← 𝑡0 + 𝑞 · 𝑏/𝜃0 − 𝑏/𝜃𝑖
7: 𝜎𝑖𝑞 ← 𝑠𝑖𝑔𝑛(𝑠𝑘𝑖 , (𝑞,𝑚0)),𝑚𝑖𝑞 ← (𝑖, 𝑞, 𝜎𝑖𝑞)
8: send packet𝑚𝑖𝑞 to 𝑃 at 𝑡𝑖𝑞

9: upon receiving (ℎ1𝑖 , ℎ2, 𝜎𝑖) from 𝑃 do
10: if 𝑣𝑒𝑟𝑖 𝑓 𝑦 (𝑝𝑘𝑃 , (ℎ1𝑖 , ℎ2), 𝜎𝑖) outputs 1 then
11: record round trip time Δ𝑖 ← 𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑖 − 𝑡𝑖
12:

13: as a prover
∀𝑖 ∈ [1, 𝑛],M[𝑖] ← ∅, (𝑝𝑘𝑝 , 𝑠𝑘𝑝) ← 𝑘𝑒𝑦𝐺𝑒𝑛

14: upon receiving packet𝑀′ from C𝑖 do
15: (𝑖, 𝑞, 𝜎) ← 𝑀′

16: add (𝑞, 𝜎) toM[𝑖]
17: if

∑𝑛
𝑗=1 |M[𝑗] | = (𝑛 − 𝑓)𝑘 then

18: ∀𝑗 ∈ [1, 𝑛], ℎ1𝑗 ← 𝐻𝑎𝑠ℎ(M[𝑗])
19: ℎ2 ← 𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 ({ℎ1𝑗 } 𝑗∈[1,𝑛])
20: ∀𝑗 ∈ [1, 𝑛], 𝜎 𝑗 ← 𝑠𝑖𝑔𝑛(𝑠𝑘𝑝 , (ℎ1𝑗 , ℎ2))
21: ∀𝑗 ∈ [1, 𝑛], send (ℎ1𝑗 , ℎ2, 𝜎 𝑗) to C𝑗 .

22:

	 packets

are received

...

...

...

... ...

Protocol starts Packets arrive at
the network core

	 packets

are received

Figure 3: The measurement phase of PoB protocol. 𝑡𝑖𝑞 is the
time for challenger C𝑖 to send the𝑞-the packet. 𝑘1 is the actual
number of packets received with sequence number 1.

On receiving the packets from the challengers, the prover separates

the messages from different challengers and adds them to corre-

sponding sets. When the total number of received packets reaches

(𝑛 − 𝑓)𝑘 , the prover generates a response to broadcast to all chal-

lengers. This terminates the measurements phase. The response

contains (1) a receipt ℎ1𝑖 to each challenger C𝑖 , which is the hash of

all packets received from the same sender; and (2) a Merkle root ℎ2
constructed from all receipts. All challengers record the round trip

time Δ𝑖 between the start time 𝑡𝑖1 and the time 𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑖 at which

a valid response is received.

5

Algorithm 2 The Verification Phase of PoB Protocol

1: as a prover
2: 𝐵𝑖 ← a bitmap of size 𝑘 where the 𝑞-th bit in the bitmap is

set if some packet (𝑞, ∗) ∈ M[𝑖]
3: 𝑃𝑖 ← the Merkle proof of ℎ1𝑖
4: send (𝐵𝑖 , 𝑃𝑖) to 𝐶𝑖 , output (Report, ℎ2) to verifier.

5:

6: as a challenger
7: upon receiving (𝐵𝑖 , 𝑃𝑖) from 𝑃 do
8: Add all (𝑞, 𝜎𝑖𝑞) to a setM if the 𝑞-th bit is set to 1 in

𝐵𝑖 . Check whether 𝐻𝑎𝑠ℎ(M) = ℎ1𝑖 .
9: Reconstruct the Merkle root ℎ′ using 𝑃𝑖 and ℎ1𝑖 . Check

whether ℎ2 = ℎ
′
.

10: If both two checks are passed, output (Report,

P, ℎ2,Δ𝑖 , |M|) to verifier.

11:

12: as a verifier
13: M ← ∅, 𝑐𝑛𝑡 ← 0

14: upon receiving (Report, ℎ) from prover P do
15: record ℎ

16: upon receiving (Report, P, ℎ2,Δ𝑖 , 𝑘𝑖) from challenger 𝐶𝑖
do

17: Check ℎ2 = ℎ, add Δ𝑖 toM, 𝑐𝑛𝑡 ← 𝑐𝑛𝑡 + 𝑘𝑖
18: if 𝑐𝑛𝑡 ≥ (𝑛 − 𝑓)𝑘 and |M| ≥ 𝑛 − 𝑓 then
19: Δ′ ← 𝑀𝑒𝑑𝑖𝑎𝑛(M)
20: 𝜃 ′P ←

𝑐𝑛𝑡 ·𝑏 · (𝑛−2𝑓)
Δ′ · (𝑛−𝑓)

21: Output (PoB, P, 𝜃 ′P)

22:

Verification phase. In the verification phase, the prover is respon-

sible for proving to the challengers the content of received packets.

To that end, it constructs another response revealing the indices

𝐵𝑖 of packets received from C𝑖 and showing the inclusion of each

receipt in the Merkle tree with a Merkle proof 𝑃𝑖 . It also sends the

Merkle root to the verifier. On receiving the Merkle proof 𝑃𝑖 from

the prover, the challengers reconstruct the receipt hash and the

Merkle root. The challenger C𝑖 forwards Δ𝑖 and the number of pack-

ets sent by it to the verifier, after making sure that both the hashes

are consistent. At the end of the second phase, the verifier aggre-

gates these measurements from all the challengers about how long

the measurement phase takes and how many packets are indeed

received by the prover. It also forwards the reports from challengers

to the prover, who checks the consistency and submits the packets

and the Merkle proof in case disputes exist. Once the verifier has

received “sufficiently many" valid reports . Specifically it waits to

receive a confirmation from at least 𝑛 − 𝑓 challengers with at least

(𝑛 − 𝑓)𝑘 packets in total. We assume there is no packet drop and

address the packet drop problem in §5. Then it calculates the final

output bandwidth by dividing the total size of received packets by

the median of the reported RTTs; see line 20 of Algorithm 2.

4 Security Model and Analysis

The primary challenge in trustfree networking is the inherent se-

curity vulnerability, since any party can depart from the protocol

at will and even collude with other parties to manipulate the re-

sults. In this section, we formalize a broad threat model underlying

measuring bandwidth, systematically examine the security issues

to which the system is exposed (§4.1), and analyze the security

guarantees for our protocol (§4.2).

4.1 Threat Model

We consider a static adversary allowed to corrupt at most 𝑓 among

𝑛 challengers before the protocol starts, the rest of uncorrupted

challengers are referred to as honest. The prover can also be cor-

rupted. In addition to the backhaul link indicated in the model in

§3.1, we allow the adversary to access external communication

channels. Specifically, the adversary has access to additional links

with arbitrarily high bandwidth connecting to all the participants.

The corrupted parties can act arbitrarily in order to either inflate

or deflate the measured bandwidth; we discuss prominent attacks

below.

Withholding attack. The measurement of bandwidth requires the

challengers to send probes and measure the time it takes for the

prover to receive the probes. The corrupted challengers who have

been bribed by the consumers or the competitors of a prover might

be motivated to deflate the bandwidth estimation to reduce service

costs. They can delay the sending of the packets to increase the

observed RTT or even withhold the packets for the entire protocol.

During the verification phase, corrupted challengers can also refuse

to report verification results. Moreover, the prover can also bribe

the challengers to withhold packets during the measurement phase

but report that the maximum number of packets have been sent in

the verification phase.

Rushing attack. Since a reasonable incentive system will allow

the participants to be compensated in proportion to their band-

width, provers can collude with challengers to inflate bandwidth to

get more rewards. During the measurement phase, instead of the

backhaul link which is filled with the packets from uncorrupted

challengers, corrupted challengers transmit packets through an

extra link with an extremely high bandwidth to finish the measure-

ments within a shorter time.

Information sharing attack. Besides the rushing attack, another

way for the prover to get more information about the data from the

challengers than that was transmitted through the backhaul link is

to exploit the information structure. In the verification phase, to

facilitate the verification of whether the packets received by the

prover are indeed those sent by the challengers, the challengers are

required to provide the information related to packet generation. If

the information to generate packets is much smaller than the actual

packet data and is shared to the prover directly, the prover can also

terminate the measurements much earlier since it can generate a

fraction of packets by itself. For instance, in our protocol, corrupted

challengers can send their secret keys to the prover.

DoS and related attacks. Attacks are possible where a challenger
sends traffic with invalid signatures, sends duplicate packets, or

reports fewer packets in the verification phase. These attacks re-

sult in the same outcome: the prover is unable to report its actual

bandwidth because unwanted extra traffic was present at the time

of challenge. One can view all these attacks as variants of Denial-

of-Service (DoS) attack. DoS or distributed Dos (DDoS) attacks are

possible in our setting, especially if one implements the protocol

6

by setting public IP address. Specifically, a challenger or a group

of them with a high bandwidth link can flood the prover backhaul

with invalid packets, preventing the valid packets sent by uncor-

rupted challengers from reaching the prover. Even a challenger

who has not been selected for a particular challenge but knows the

time of the challenge can disrupt the challenge similarly. It will

be challenging to alleviate the problem using standard filtering

techniques [43] without cooperation from the ISP. In fact, if ISP

cooperates or the deployment is on a local network, a promising di-

rection for countermeasure will be to adopt a network architecture

with accountability[10] and incentivize ISPs to enforce challenge-

specific security policies[41]. The detection and dis-incentivization

of such attacks (for instance, using crypto-economic “slashing”) is

a topic of future work. Furthermore, we assume that there is no

attack during the network synchronization phase; in future we can

adopt Byzantine resistant time synchronization schemes such as

those in [16] to further enhance security.

4.2 Security Properties

Theorem 1 (Soundness). When 𝑓 < 𝑛/3, the prover cannot
inflate the bandwidth.

Proof. According to the protocol, all packets with sequence

number𝑞 sent by uncorrupted challengers will arrive at the network

core at 𝑡0 + 𝑞 · 𝑏/𝜃0 and be added to the backhaul link queue 𝑄 .

Because it takes at least 𝑏/𝜃0 to finish transmitting all packets with

the same sequence number (according to bandwidth condition in

Eq.2), the queue will never be empty during the measurement phase.

Before sending the response, the prover waits for 𝐾 ≥ (𝑛 − 𝑓) · 𝑘
packets, among which at most 𝑓 𝑘 packets come from corrupted

challengers. These packets can be sent through an external link

(rushing attack) or generated by prover directly if the secret keys are

shared in collusion (information sharing attack). In either case they

will not actually consume the bandwidth of the prover’s backhaul

link. Even so, there are still at least 𝐾 − 𝑓 𝑘 ≥ (𝑛 − 2𝑓) · 𝑘 packets

sent by uncorrupted challengers. Since packets from uncorrupted

challengers are not forgeable by anyone else, the earliest time at

which the prover can send response is the time at which (𝐾 − 𝑓 𝑘)
packets from 𝑄 get delivered, which is at least 𝑡𝑅 = 𝑡0 + 𝑏/𝜃0 +
(𝐾 − 𝑓 𝑘)𝑏/𝜃P, whereby the uncorrupted challengers will receive

the response and time 𝑡𝑖
𝑅
> 𝑡𝑅 .

Since the verifier needs to collect at least𝑛−𝑓 timemeasurements,

of which 𝑛 − 2𝑓 must be reported by uncorrupted challengers, the

median Δ′ of the RTTs must be bounded by the minimum of honest

measurements since 𝑓 < 𝑛/3, in this way the estimated time will

not get affected by individual misreports. Then, denoting the set of

honest challengers as 𝐻 , we have Δ′ ≥ min{𝑡𝑖
𝑅
}𝑖∈𝐻 − 𝑡0 − 𝑏/𝜃0 >

(𝐾 − 𝑓 𝑘)𝑏/𝜃P and

𝜃 ′P =
𝐾 · 𝑏 · (𝑛 − 2𝑓)
Δ′ · (𝑛 − 𝑓) ≤

𝐾 · (𝑛 − 2𝑓) · 𝜃P
(𝐾 − 𝑓 𝑘) · (𝑛 − 𝑓) ≤ 𝜃P .

□

Theorem 2 (Approximate completeness). When 𝑓 < 𝑛/3 and
the prover is uncorrupted, the protocol will always output bandwidth
with accuracy 𝛼 = 𝜃 ′P/𝜃P ≥ (𝑛 − 2𝑓)/(𝑛 − 𝑓).

Proof. When the prover is uncorrupted, it waits for (𝑛 − 𝑓) · 𝑘
packets to generate the response. Even under withholding attacks,

where corrupted challengers never send their packets, (𝑛 − 𝑓) · 𝑘
packets generated by honest challengers will arrive at the prover

before 𝑡𝑅 = 𝑡0 + 𝑏/𝜃0 + (𝑛 − 𝑓)𝑘𝑏/𝜃P. Then all uncorrupted chal-

lengers receive the response at the same time and output to the

verifier. Assuming that the size and the latency of the response is

negligible, we have the median RTT Δ′ = (𝑛− 𝑓)𝑘𝑏/𝜃P. If corrupted
challengers try to misreport the number of packets received by the

prover, claim the proof sent by the prover is incorrect, or even

withhold the measurement results, the prover can send the genuine

packets it has received from the challenger to the verifier together

with the Merkle proof. The verifier will reconstruct the Merkle root

from the submitted partial data and Merkle proof to solve disputes.

Thus, even under attacks, the total number of packets are no less

than (𝑛 − 𝑓)𝑘 . Consequently, the protocol will output

𝜃 ′P =
(𝑛 − 𝑓)𝑘𝑏 · (𝑛 − 2𝑓)

Δ′ · (𝑛 − 𝑓) =
𝑛 − 2𝑓
𝑛 − 𝑓 𝜃P .

□

Remark. (Adversarial threshold.) Our protocol can tolerate up

to a fraction 1/3 of Byzantine challengers. This threshold of 1/3
arises from the requirement to ensure that a majority of (𝑛 − 𝑓)
RTT measurements are collected from uncorrupted challengers.

This allows the verifier to terminate the collection responsively

(or “lazily”) when receiving enough reports without the require-

ment of a timer. However, if the verifier has access to a timer with

desired accuracy (roughly 100ms for us), it can wait for a certain

period (determined by maximal network delay and backhaul links

transmission delays) to collect the measurements, by which all chal-

lengers who fail to send the report are recorded as 0. In this case at

least 𝑛 − 𝑓 reports of total 𝑛 reports are from honest challengers,

the majority requirement 𝑛 − 𝑓 > 𝑓 means that the protocol is able

to tolerate a fraction 1/2 of Byzantine challengers.

5 Protocol Implementation

In this section, we present the protocol implementation in a real

system. Towards practicality, we discuss the factors that are not

addressed in our theoretical modeling (§5.1) which leads to the

modifications in implementation to the basic form of the protocol

(§5.2).

5.1 Practical considerations

Challenger bandwidth. In §3.3, we assume each challenger can

measure its spare bandwidth 𝜃𝑖 precisely. However, this bandwidth

may be time-varying and it will be difficult for the challenger to

measure every time. We relax this requirement by allowing every

challenger simply ensure that it has at least 𝜃0 bandwidth available

for the challenge. Here 𝜃0 = 𝜃P/(𝑛 − 𝑓) is the smallest value that

satisfies the bandwidth condition in Eq. (2). Each challenger will

now send the challenge traffic at rate 𝜃0.

Latency. The key requirement of our technique is that the packets

from each challenger reach the prover backhaul at the same time.

The aggregation condition Eq. (1) ensures this when there is no

synchronization error or latency. However, in practice, a packet

from the challenger C𝑖 will take time 𝑙𝑖 to reach the prover, where 𝑙𝑖
is the one-way latency from challenger C𝑖 to the prover. The value

7

of 𝑙𝑖 can indeed vary for different challengers and to account for

such varying latencies, we modify Eq. (1) as

𝑡0 +
𝑏

𝜃0
+ 𝑙0 = 𝑡11 +

𝑏

𝜃0
+ 𝑙1 = · · · = 𝑡𝑛1 +

𝑏

𝜃0
+ 𝑙𝑛

where 𝑡𝑖1 is the start time of challenger C𝑖 to send the first packet.

Note that 𝜃𝑖 is replaced by 𝜃0 as in our implementation; challengers

release packets at rate 𝜃0.

Likewise, the response packet from the prover will take time 𝑙𝑖
to reach challenger C𝑖 . Accordingly, Δ𝑖 in Algorithm 1 now changes

to Δ𝑖 = 𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑖 − 𝑡𝑖 − 2 · 𝑙𝑖 , where 𝑐𝑢𝑟𝑇𝑖𝑚𝑒𝑖 is the time when

challenger C𝑖 receives the response from the prover. For measur-

ing 𝑙𝑖 , before the challenge starts, each challenger sends 20 ICMP

ping packets to the prover and takes the average across these 20

packets as 𝑅𝑇𝑇 . We set the value 𝑙𝑖 as 𝑅𝑇𝑇 /2. Note that using ping

packets to measure 𝑙𝑖 creates a vulnerability: prover can delay the

ping response, inflating 𝑙𝑖 and thereby 𝜃 ′P. To circumvent this, one

possible solution is to restrict the challengers to be within certain

geographical limit of the prover. This will ensure that the maximum

𝑙𝑖 is bounded by a small value of say 10-15 ms and so the error in

estimating 𝜃 ′P due to incorrect 𝑙𝑖 is also small, provided the chal-

lenge duration is chosen to be sufficiently long; see error analysis

of implemented protocol in § 5.3.

Packet drops. We have assumed that all the 𝑘 packets from a

challenger will reach the prover. However, since all the challengers

send the packets simultaneously to the prover, there will be buffer

overflow at the last link of the prover and some packets will be

dropped. We use the UDP protocol for the challenge packets, so

dropped packets will not be retransmitted. Since we use packet

count as the termination condition, packet drops will prevent the

challenge from being terminated. In our experiments, we find that

we can compensate for the packet drops by asking challengers to

send 1.1𝑘 packets, i.e., assuming a packet drop rate bounded by

10%, this guarantees that the prover receives (𝑛 − 𝑓)𝑘 packets and

terminates.

Time synchronization. We require that all the challengers are

synchronized via Network Time Protocol (NTP) [8]. Note that NTP

does not ensure perfect time synchronization, there can still be

residual synchronization errors of the order of tens of milliseconds

over the Internet [39].

Computation overhead. The use of cryptographic primitives like

𝐻𝑎𝑠ℎ and𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 (Algorithm 1) inevitably incurs computation

overhead, which will delay the prover from sending responses

to challengers and thereby add to an error in measurements. We

detail empirical computation times of these primitives in §6.1 as a

function of the number of challengers and challenge duration for

completeness.

5.2 Implementation

We implement challengers and the prover as UDP socket appli-

cations in C++ and each challenger conducts measurements by

sending UDP packets to the prover. Details are described below.

Digital signatures. As outlined in Algorithm 1, a challenger needs

to sign each packet. We leverage the Edwards-curve digital signa-

ture scheme, Ed25519 [27] for signature generation and verification

as its computation overhead is low. Our measurement results in-

dicate that if we use challenge packets of 64 Bytes (the size of

Ed25519 signature), measurement accuracy is affected especially

if the challenger is connected over WiFi. For efficiency, modern

generation WiFi uses packet aggregation where multiple packets

from the network layer are combined into a single medium access

control (MAC) layer packet of a larger size of up to 1 MB. [44]. If we

use smaller-sized 64 bytes UDP challenge packets, WiFi MAC aggre-

gation is affected reducing the throughput i.e., 𝜃0 for the challenger.

To address this, we aggregate multiple signatures and send it as a

single large packet. We use 1514 bytes challenge packets i.e., 𝑏 in

Eq. (1) is 1514 bytes (1472 byte UDP payload with a 42-byte header)

which contain 23 different 64 byte signatures. Payload consists of

all signatures since if any content were in plain text, it may be

omitted by malicious challenger thereby reducing the packet size.

We use the OpenSSL based implementation of Ed25519 [2].

Hashing and verification. As described in Algorithm 1, upon

receiving the required number of total packets, the prover generates

a hash for each challenger C𝑖 , i.e., ℎ1𝑖 ← 𝐻𝑎𝑠ℎ(𝑀 [𝑖]) where𝑀 [𝑖]
is the set of all the signatures received from challenger C𝑖 . The
prover then generates a𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 of all the hashes from all the

challengers. For generating the hash we use 𝑠ℎ𝑎256 hash function

via the implementation [6] and for generating the Merkle root, we

use a C++ open source implementation [7]. The prover sends ℎ1𝑖
and 𝑀𝑒𝑟𝑘𝑙𝑒𝑅𝑜𝑜𝑡 as response to the challenger C𝑖 . The response

packet is a UDP packet with a payload of 64 bytes as it contains

two 256-bit hashes. In the verification phase (Algorithm 2), the

prover sends bitmap 𝐵𝑖 and Merkle proof 𝑃𝑖 to challenger C𝑖 , who
then verifies the Merkle proof and sends RTT Δ𝑖 and number of its

packets received by the prover, to the verifier.

Precomputing the signatures. Signature generation incurs com-

putation time too and our benchmarking of OpenSSL implementa-

tion [2] of Ed25519 indicates that generating one signature of 64

bytes takes about 50-60microseconds (𝜇𝑠) on a resource-constrained

Linux system consisting of 1 GB of RAM and 1 CPU core. For each

packet, a challenger has to generate 23 signatures which will incur

a maximum time of 23 ∗ 60 ≈ 1.4 ms. As the signature generation

time is more than the packet transmission time of about 1.2 ms even

at 𝜃0 = 10 Mbps, in our implementation challengers precompute all

the signatures before the challenge begins. This can be done after

the challenger receives the challenge request and while measuring

the ping latency 𝑙𝑖 .

Benchmarking the technique. Making use of multiple chal-

lengers with the additional requirement of security introduces more

sources of errors. Particularly, 𝑙𝑖 is not a constant and has some jit-

ter. NTP synchronization can result in error of tens of milliseconds

over the Internet. Computation overhead of hash and Merkle tree

generation adds delay. Given these sources of error, we evaluate

the accuracy as a function of challenger duration and the number

of challengers.

5.3 Security Analysis of Implemented Protocol
Taking practical factors such as packet drop rate bound 𝑟 and an

overall latency bound 𝐿 (including time synchronization error, trans-

mission latency and computation overhead) into consideration, we

analyze the security properties of our implemented protocol below.

Theorem 3 (Soundness). In implemented protocol, by adjusting
the correction factor to (𝑛 − 2𝑓 − 𝑟 𝑓)/(𝑛 − 𝑓) − 𝐿𝜃0/(𝑘𝑏), the prover
cannot inflate the bandwidth when 𝑓 < 𝑛/3.

8

Proof. When at least 𝑛 − 𝑓 honest challengers send packets at

rate 𝜃0, according to the bandwidth condition in Eq.2, the backhaul

link will never be empty. To account for packet drops, challengers

are required to send (1+𝑟)𝑘 packets, which means at most (1+𝑟) 𝑓 𝑘
packets can be sent by corrupted challengers without actually con-

suming the bandwidth (in rushing attack or information sharing

attack). Thus, the number of packets sent by uncorrupted chal-

lengers is at least (𝑛 − 2𝑓 − 𝑟 𝑓) · 𝑘 .

For handling latency, note that the median Δ′ of the RTTs is at
least (𝑛 − 2𝑓 𝑘)𝑏/𝜃P − 𝐿, whereby

𝜃 ′P ≤
(𝑛 − 𝑓)𝑘𝑏

(𝑛 − 2𝑓 − 𝑟 𝑓)𝑘𝑏/𝜃P − 𝐿
· (𝑛 − 2𝑓 − 𝑟 𝑓)𝑘𝑏 − 𝐿(𝑛 − 𝑓)𝜃0(𝑛 − 𝑓)𝑘𝑏

≤ 𝜃P .

□

Theorem 4 (Approximate completeness). When 𝑓 < 𝑛/3 and
the prover is uncorrupted, the implemented protocol will always output
bandwidth with accuracy 𝛼 ′ = 𝜃 ′P/𝜃P ≥

(𝑛−2𝑓 −𝑟 𝑓)𝑘𝑏/(𝑛−𝑓)−𝐿𝜃0
(1+𝑟)𝑘𝑏+𝐿𝜃0 .

Proof. In presence of latency and packet drops, the maximum

median RTT is Δ′ = (𝑛− 𝑓) (1+𝑟)𝑘𝑏/𝜃P+𝐿. But the total number of

packets are still no less than (𝑛− 𝑓)𝑘 . Consequently, the bandwidth
of honest challenger output by the protocol is at least

𝜃 ′P =
(𝑛 − 𝑓)𝑘𝑏

(𝑛 − 𝑓) (1 + 𝑟)𝑘𝑏/𝜃P + 𝐿
· (𝑛 − 2𝑓 − 𝑟 𝑓)𝑘𝑏 − 𝐿(𝑛 − 𝑓)𝜃0(𝑛 − 𝑓)𝑘𝑏

≥ (𝑛 − 2𝑓 − 𝑟 𝑓)𝑘𝑏 − 𝐿(𝑛 − 𝑓)𝜃0(𝑛 − 𝑓) (1 + 𝑟)𝑘𝑏 + 𝐿(𝑛 − 𝑓)𝜃0
𝜃P

=
(𝑛 − 2𝑓 − 𝑟 𝑓)𝑘𝑏/(𝑛 − 𝑓) − 𝐿𝜃0

(1 + 𝑟)𝑘𝑏 + 𝐿𝜃0
𝜃P .

□

6 Experimental Evaluation

In this section, we first evaluate how the use of multiple challengers

can accurately measure the available bandwidth at the backhaul.

For this, we consider only the setting where all participants are

honest. We also highlight how existing per-hop capacity estimation

techniques fail to give accurate results for backhaul of 100 Mbps or

more in §6.1. Also, we stress-test our experiments under Byzantine

attacks to evaluate the security of the protocol in §6.2.

Experimental setup. Our setup consists of a diverse set of chal-

lengers in terms of computation capability and geographical loca-

tion. We carry out experiments with a maximum of ten challengers.

The prover has backhaul bandwidth (𝜃P) of 250 Mbps enforced by

Linux rate limiter tc. The details of the prover and different chal-

lengers are listed in Table 1. Challengers 1-3 are connected to the

Internet via WiFi links, while other challengers have a wired link.

6.1 Performance Evaluation

First, we benchmark the accuracy of our measurements by carrying

out experiments without corrupted challengers. We evaluate the

performance in the presence of corrupted challengers later in §6.2.

Measurement accuracy with all honest participants. To study

how accuracy varies with challenge duration and the number of

challengers, we conduct experiments by adjusting the number of

Compute Parameters Location RTT
RAM (GB) CPU (ms)

Prover 1 1 AWS X

Ch. 1-3 12-16 4-8 Y 25

Ch. 4-5 1 1 AWS Z 198

Ch. 6-10 1 1 AWS X 1

Table 1: Experimental setup details for the prover and chal-
lengers. Location of the nodes are in different continents and
are anonymized.

selected challengers from 4 to 10 and challenge duration from 25

ms to 200 ms for the prover.

Challenge duration is the time required to transmit the required

amount of packets i.e., (𝑛−𝑓)𝑘 packets through the prover backhaul.
Individual challengers will take longer to complete the challenge

due to their latency, 𝑙𝑖 , and the fact that they send 1.1𝑘 packets to

account for packet drops. We rate-limit the prover backhaul to 250

Mbps using the Linux utility tc [5] and set the bandwidth of each

challenger (𝜃0) as 𝜃P/𝑛, where 𝑛 is the number of challengers.

150

170

190

210

230

250

270

25 50 75 100 125 150 175 200

B
an

d
w

id
th

 (
M

b
p

s)

Challenge Duration (ms)

4 challengers

6 challengers

8 challengers

10 challengers

Figure 4: Backhaul measured by our technique for different
challenge durations. Error bars ≈ std. deviation.

Fig. 4 shows the backhaul measured by our technique for varying

number of challengers and challenge durations as 25 ms, 50 ms,

100 ms and 200 ms. For each challenge duration, ten experiments

are carried out. We plot the average and standard deviation for ten

experiments in Fig. 4.

As can be seen from Fig. 4, with the number of challengers set

to 4, the measured backhaul is only about 167 Mbps for 25 ms

challenge duration, but when the challenge duration is increased

to 200 ms, the measured backhaul increases to about 241 Mbps

with an error of about 4%. On the other hand, when the number

of challengers is increased to 6 or more, the measured backhaul

has an error of less than 5%, even for 25 ms challenge. However,

the standard deviation for 25 ms and 50 ms experiments is higher.

The measurement accuracy increases and the standard deviation

decreases, if the challenge duration is increased to 100 ms or more.

For 100 ms, we observe an error of less than 5% for six or more

challengers.

We look at how measurement accuracy is affected as a function

of the challenge duration for the case of 𝑛 = 8. Fig. 5 shows the

9

175

200

225

250

275

300

325

350

375

400

425

450

475

500

525

0 1 2 3 4 5 6 7 8 9

B
an

d
w

id
th

 (
M

b
p

s)

Challenger

25 ms 50 ms 100 ms 200 ms

Median 25ms Median 50ms Median 100ms Median 200ms

Figure 5: Backhaul measured by each challenger (𝑛 = 8) for
different challenge durations. Error bars ≈ std. deviation.

backhaul measured by each of eight challengers, as an average

across ten experiments for different challenge durations. As can be

seen from Fig. 5, the backhaul measured by individual challenger

shows higher error when challenge duration is 25 ms or 50 ms.

For example, the backhaul measured by challenger 5 is about 440

Mbps and 320 Mbps for 25 ms and 50 ms duration. However, the

error decreases when challenge duration is increased to 100 ms or

more. Note that standard deviation across 10 experiments for each

challenger also decreases as the challenger duration is increased.

Some ISPs use token bucket filter to rate limit the backhaul [53],

whereby few packets can be released in a burst at much higher rate

than the average backhaul speed. Since in our technique we use

large number of packets (much more than the burst size of typical

token bucket filter), we will still be able to measure the average

backhaul which is our goal.

Sources of error. As shown in Fig. 5, it is interesting to note

that some challengers measured the prover’s backhaul as higher

than the actual value of 250 Mbps. This is due to errors affecting

measurement accuracy (see §5) such as time synchronization and

jitters in latency. We observe that due to these errors, there is a time

difference of 20-30 ms between the first packet from the first and the

last challenger reaching the prover backhaul. To compensate for the

maximum packet drop rate of 10% (see §5), each challenger sends

10% more data. So, the challengers that start late might receive the

response from the prover before they finish sending their share of

challenge packets, if sufficient challenge packets have been received

by the prover from the challengers that start early. Such late starting

challenger’s backhaul estimate may be higher than the actual value.

However, the median evaluation at the final step, which is primarily

designed for security, also provides robustness against such outliers.

Consequently, our measurement accuracy increases as we increase

the number of challengers.

The computation overhead of hash and Merkle tree generation

also adds to the measurement error. We observe that the compu-

tation overhead for the case of 4 challengers for 25 ms challenge

duration is about 500 𝜇s, while for 10 challengers for 200 ms chal-

lenge duration is about 3ms.

Amount of data. For the PoB protocol designed to handle the

packet drop rate of 10%, the total amount of data required for

different challenge duration for prover backhaul of 250 Mbps is

given in Table 2.

Expt. Duration (ms) 25 50 100 200

Data (MB) 0.86 1.71 3.44 6.88

Table 2: Amount of challenge data required.

As seen from Fig. 5, for challenges with 100-ms duration we

get a good accuracy for each challenger. Thus, our results show

that our technique can measure 250 Mbps backhaul in 100 ms with

about 3.5 MB of data and an error of less than 5%, when 6 or more

uncorrupted challengers are involved.

Comparison with a single challenger. With a single challenger

that has a bandwidth of 250 Mbps, we could measure prover back-

haul of 250 Mbps with less than 2% error with challenge duration

being only 10 ms and the amount of data required is about 345 KB.

Multichallenger technique requires larger challenge duration due

to the aforementioned errors. As the duration of the challenge is

longer, the amount of data used correspondingly increases. But the

primary benefit of multichallenger technique is that each challenger

requires much smaller bandwidth. With ten challengers, each chal-

lenger requires a bandwidth of only 25 Mbps to measure prover

backhaul of 250 Mbps.

Accuracy for larger prover backhauls. The experimental results

of accuracy for larger prover backhauls (500 Mbps to 1000 Gbps)

with 10 challengers are tabulated in Table 3. We observe that the

measurement error grows as prover backhaul increases; however

even for prover backhaul of 1000 Mbps, the measurement error is

less than 8%.

Backhaul (Mbps) 500 750 1000

Measured BW (Mbps) 474.7 705.4 921.4

Error (%) 5.1 5.9 7.9

Table 3: Measured bandwidth for larger prover backhauls.

Backhaul (Mbps) 500 750 1000

Overhead (ms) 4.6 7.3 10.2

Table 4: Computation overhead

One reason for higher measurement error as prover backhaul

increases is the increasing computation time for hash and Merkle

tree construction. Table 4 shows the computation overhead for vari-

ous prover backhauls. The computation overhead for a prover with

1000 Mbps is about 10 ms which is 10% of the challenge duration

of 100 ms. These experiments suggest that as the prover backhaul

increases, the computation overhead increases. So for even larger

prover backhaul than 1000 Mbps, the challenge duration should be

increased.

Effect of cross traffic. Our PoB protocol terminates when (𝑛 −
𝑓)𝑘 packets are received by the prover. The number of packets 𝑘

sent by each challenger is determined by the prover backhaul and

challenge duration. However, if there is cross-traffic, the available

bandwidth at the prover will be reduced and the challenge packets

may experience a larger drop rate than 10% that we assume for our

experiments. In this situation the experiment may not terminate.

10

We propose a modification to measure the available bandwidth

in the presence of cross traffic, up to a fixed accuracy 𝛿 . The protocol

repeats the basic PoB protocol, but instead of verifying 𝜃P, it verifies

iteratively 𝜃
(1)
P = 𝛿, 𝜃

(2)
P = 2𝛿, ..., 𝜃

(ℓ)
P = ℓ𝛿 and so on till 𝜃P. In more

detail, we proceed as follows.

(1) At step 𝑖 , execute multichallenger PoB protocol with 𝜃
(𝑖)
P =

𝑖𝛿 . Note that each challenger must release challenge traffic

at rate 𝜃0 = 𝜃
(𝑖)
P /𝑛 at this step.

(2) Each challenger sets a timeout of 5× (challenge duration).

If the response from the prover is not received during this

period, the challenger declares not terminate. If majority

of the challengers declare not terminate, we say that the

protocol does not terminate.

(3) If the protocol for the 𝑖th step terminates, increment 𝑖 ← 𝑖+1
and repeat the steps above.

(4) Else if the protocol for the 𝑖th step does not terminate, output

the bandwidth obtained in the previous execution of the PoB

protocol.

We assume that the amount of cross traffic does not vary throughout

all the steps of the experiment. Using the approach above, we carried

out experiments to measure available bandwidth in the presence of

different amounts of cross-traffic. The backhaul of the prover is set

to 250 Mbps and the number of challengers is 10. 𝜃𝑃,0 is set to 40

Mbps and 𝛿 to 20 Mbps.

Available BW (Mbps) 220 140 90

Measured BW (Mbps) 219.6 144.6 104.1

Table 5: Measured bandwidth in the presence of cross traffic.

Table 5 summarizes the results. The measured bandwidths are

close to available bandwidths, except for 90 Mbps. The likely rea-

son for this discrepancy is that the presence of challenge traffic

reduces cross traffic, resulting in an overestimation of the available

bandwidth.

Comparison with pathchar. As we outlined earlier, the perfor-

mance of pathchar depends on how robust are minimum delay

estimates over the Internet and how long will it take for us to get

a robust estimate. Thus, to evaluate the performance of pathchar,

we measure the RTT to the prover node using ping for 15 different

packet sizes in multiples of 100 Bytes, starting from 100 Bytes and

ending at 1500 Bytes. We ran the experiment five times and took

500 measurements for each packet size. Pathchar [17, 24] suggests

taking the minimum RTT for each packet size and fitting the linear

least squares line to the data.

Expt. 1 2 3 4 5

RTT 16.589 16.511 16.635 16.565 16.500

Table 6: Linear least squares line’s intercept values for each
experiment’s dataset. RTT is in𝑚𝑠.

Figure 6 shows the minimum RTT (ms) versus packet size in

bytes and the fitted line for the first experiment. Table 6 shows the y-

intercepts for five experiments; note that the y-intercept represents

0 200 400 600 800 1000 1200 1400
Packet size (Bytes)

16.6

16.8

17.0

17.2

17.4

17.6

RT
T

(m
s)

Min RTTs
Fitted line
Intercept

Figure 6: Minimum round trip time to the prover versus
packet size in Bytes. The line shows the linear least squares
fit.

latency. We can see that the y-intercepts have a difference of 50-100

ms. Thus, we can say that the jitters experienced over the internet

is not negligible; in particular, we cannot estimate the minimum

latency below accurancy of 50-100 microseconds. Consequently,

it is not feasible to use pathchar to measure 100 Mbps or higher

bandwidth.

6.2 Security Evaluation

We carry out experiments to study how measurement results are

effected in the presence of malicious challengers. We choose total

number of challengers as 𝑛 = 10 and malicious challengers 𝑓 = 2.

We carry out measurements for two different prover backhauls of

100 Mbps and 250 Mbps, with a challenge duration of 100 ms.

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

B
an

d
w

id
th

 (
M

b
p

s)

Challenger

Honest Withhold Rushing True BW

Expected Rushing Honest Median Rushing Median Withhold Median

Figure 7: Backhaul measured by each challenger in case of
withholding and rushing attack. Prover backhaul is 250Mbps.

Fig. 7 shows the average bandwidth measured by each challenger

across ten experiment runs for the case when prover backhaul is 250

Mbps. As can be seen from Fig. 7, the measured backhaul in the case

when all challengers are honest (honest median in Fig. 7) is 251.5

Mbps, while the measured backhaul in the case of withholding

attack (Withhold Median in Fig. 7) is 241.4 Mbps. The expected

measured backhaul in case of withholding attack is 250 Mbps. So

11

the measured accuracy in case of withholding attack is within 4%.

Note that this is the accuracy of the measurement technique. Our

PoB protocol will apply a correction factor 𝛼 = (𝑛 − 2𝑓)/(𝑛 − 𝑓)
(Algorithm 2) and output the guaranteed bandwidth for the prover

as 241.4𝛼 ≈ 181 Mbps which is about 28% less than the prover

backhaul of 250 Mbps.

In case of a rushing attack, the measured bandwidth is inflated

to 250/𝛼 ≈ 333 Mbps. The measured backhaul (rushing median in

Fig. 7) 331.5 Mbps matches our theoretical prediction. The output

of the protocol in this case will be 331.5𝛼 ≈ 249 Mbps, which is

only 1 Mbps less than the prover backhaul.

Note that our security guarantees require us to curtail bandwidth

inflation. Indeed, we can observe that even under a rushing attack,

the guaranteed bandwidth does not exceed the actual bandwidth.

This is enabled by multiplying by a shrinkage factor to compensate

for adversarial challengers trying to help the prover to claim an

inflated bandwidth. However, this comes at the cost of lower guar-

anteed bandwidth even when all challengers are reporting honestly.

After repeating the experiment for a backhaul of 100 Mbps, the

results stay similar, validating our theoretical predictions.

7 Conclusion and Discussion
Summary. Trustfree telemetry is a central problem in decentral-

ized networks. Our Proof of Backhaul protocol addresses a core

requirement by providing a secure and accurate backhaul band-

width measurement service for wireless access points while also

allowing open participation. The protocol is operated by a group

of challengers, whose latency and bandwidth can be ordinary, with

the goal of measuring a prover hotspot who may have a high-

bandwidth backhaul link. We have established a trust model for the

PoB problem, designed precise specifications of the PoB protocol,

and tested a high-performance, low-overhead implementation.

Improving accuracy.Our protocol guarantees soundness and com-

pleteness of backhaul measurements with a reasonable accuracy in

the presence of Byzantine parties. The accuracy ratio (1−2𝛽)/(1−𝛽)
is determined by the Byzantine fraction due to a correction made

for an unavoidable rushing attack – corrupted challengers can al-

ways rush their packets through an external high-bandwidth link

to lower RTT and inflate backhaul bandwidth to be measured. How-

ever, such backdoor links may incur substantial costs in practice,

necessitating a more relaxed threat model and a family of extended

protocols. Without rushing links, we equip PoB protocols with a

shuffle phase where a pair of challengers are asked to jointly sign

packets. This mechanism improves accuracy by making informa-

tion sharing attack harder in a probabilistic manner, with a cost

of higher communication overhead for verification. Designing a

secure and efficient proof structure for such a shuffle protocol is an

active area of research.

Cross traffic. In our proposed method for handling cross-traffic

in §6.1, we run experiments for increasing values of bandwidth

below the claimed link capacity. This requires fresh data to be sent

for each value and increases the amount of data needed. To reduce

the data consumption, a naive approach could be that the prover

replies to the challengers with the number of packets received in

a fixed duration. An alternative approach is to send intermediate

responses when appropriate amounts of data are received. Both

approaches cannot guarantee a fixed accuracy for different available

bandwidths. Designing a protocol which is more data efficient and

has such guarantees is an open problem.

References
[1] [n. d.]. FAST Internet Speed Test. https://fast.com/. [Online; accessed 13-October-

2022].

[2] [n. d.]. OpenSSL Ed25519 Implementation. https://www.openssl.org/docs/man1.

1.1/man7/Ed25519.html. [Online; accessed 18-September-2022].

[3] [n. d.]. PM-WANI Central Registry. https://pmwani.gov.in/wani. [Online;

accessed 18-September-2022].

[4] [n. d.]. Speedtest. https://www.speedtest.net. [Online; accessed 13-October-2022].

[5] 2001. TC - traffic control, Linux Manual. https://man7.org/linux/man-pages/

man8/tc.8.html. [Online; accessed 18-September-2022].

[6] 2012. C++ SHA256 Implementation. http://www.zedwood.com/article/cpp-

sha256-function. [Online; accessed 18-September-2022].

[7] 2015. https://github.com/IAIK/merkle-tree. [Online; accessed 18-September-

2022].

[8] 2020. NTP: The Network Time Protocol. http://www.ntp.org/. [Online; accessed

18-September-2022].

[9] 2021. Multi-server testing. https://www.ookla.com/articles/how-ookla-ensures-

accurate-reliable-data-2021. [Online; accessed 11-October-2022].

[10] David G Andersen, Hari Balakrishnan, Nick Feamster, Teemu Koponen,

Daekyeong Moon, and Scott Shenker. 2008. Accountable internet protocol (AIP).

In Proceedings of the ACM SIGCOMM 2008 conference on Data communication.
339–350.

[11] Suman Banerjee and Ashok K. Agrawala. 2000. Estimating available capacity of

a network connection. In Proceedings IEEE International Conference on Networks
2000 (ICON 2000). Networking Trends and Challenges in the NewMillennium. IEEE.

[12] Robert L. Carter and Mark E. Crovella. 1996. Dynamic server selection using
bandwidth probing in wide-area networks. Technical Report. Boston University

Computer Science Department.

[13] Robert L Carter and Mark E Crovella. 1996. Measuring bottleneck link speed in

packet-switched networks. Performance evaluation 27 (1996), 297–318.

[14] Ignacio Castro, Aurojit Panda, Barath Raghavan, Scott Shenker, and Sergey Gorin-

sky. 2015. Route Bazaar: Automatic Interdomain Contract Negotiation. In 15th
Workshop on Hot Topics in Operating Systems (HotOS XV). USENIX Association,

Kartause Ittingen, Switzerland. https://www.usenix.org/conference/hotos15/

workshop-program/presentation/castro

[15] Dah-Ming Chiu and Raj Jain. 1989. Analysis of the increase/decrease algorithms

for congestion avoidance in computer networks. j-COMP-NET-ISDN, 17 (1):

1–14.

[16] John Douceur, Jon Howell, and John JD Douceur. 2003. Scalable Byzantine-fault-

quantifying clock synchronization. (2003).

[17] Allen B Downey. 1999. Using pathchar to estimate Internet link characteristics.

ACM SIGCOMM Computer Communication Review 29, 4 (1999), 241–250.

[18] FCC. 2020. Title 47, Chapter I, Subchapter D, Part 96, Citizens Broadband
Radio Service. Regulatory Information. Federal Communications Commis-

sion. https://www.govinfo.gov/content/pkg/CFR-2020-title47-vol5/pdf/CFR-

2020-title47-vol5-part96.pdf

[19] Mainak Ghosh, Miles Richardson, Bryan Ford, and Rob Jansen. 2014. A TorPath
to TorCoin: Proof-of-bandwidth altcoins for compensating relays. Technical Report.
NAVAL RESEARCH LAB WASHINGTON DC.

[20] Amir Haleem, Andrew Allen, Andrew Thompson, Marc Nijdam, and Rahul Garg.

2018. Helium: A Decentralized Wireless Network. White Paper. Helium Systems,

Inc. http://whitepaper.helium.com

[21] Khaled Harfoush, Azer Bestavros, and John Byers. 2003. Measuring bottleneck

bandwidth of targeted path segments. In IEEE INFOCOM 2003. Twenty-second
Annual Joint Conference of the IEEE Computer and Communications Societies.

[22] Ningning Hu and Peter Steenkiste. 2003. Evaluation and characterization of avail-

able bandwidth probing techniques. Journal on Selected Areas in Communications
21, 6 (2003), 879–894.

[23] Van Jacobson. [n. d.]. Traceroute. https://linux.die.net/man/8/traceroute6 ([n. d.]).
[24] Van Jacobson. 1999. Pathchar. ftp://ftp.ee.lbl.gov/pathchar/ (1999).
[25] Manish Jain and Constantinos Dovrolis. 2002. End-to-end available bandwidth:

Measurement methodology, dynamics, and relation with TCP throughput. In

ACM SIGCOMM Computer Communication Review.
[26] Manish Jain and Constantinos Dovrolis. 2002. Pathload: A measurement tool for

end-to-end available bandwidth. In In Proceedings of Passive and Active Measure-
ments (PAM) Workshop. Citeseer.

[27] Simon Josefsson and Ilari Liusvaara. 2017. Edwards-curve digital signature algo-
rithm (EdDSA). Technical Report.

[28] Ghassan O Karame, Boris Danev, Cyrill Bannwart, and Srdjan Capkun. 2012. On

the security of end-to-end measurements based on packet-pair dispersions. IEEE
Transactions on Information Forensics and Security 8, 1 (2012), 149–162.

[29] Srinivasan Keshav. 1991. A control-theoretic approach to flow control. In Pro-
ceedings of the conference on Communications architecture and protocols.

12

https://fast.com/
https://www.openssl.org/docs/man1.1.1/man7/Ed25519.html
https://www.openssl.org/docs/man1.1.1/man7/Ed25519.html
https://pmwani.gov.in/wani
https://www.speedtest.net
https://man7.org/linux/man-pages/man8/tc.8.html
https://man7.org/linux/man-pages/man8/tc.8.html
http://www.zedwood.com/article/cpp-sha256-function
http://www.zedwood.com/article/cpp-sha256-function
https://github.com/IAIK/merkle-tree
http://www.ntp.org/
https://www.ookla.com/articles/how-ookla-ensures-accurate-reliable-data-2021
https://www.ookla.com/articles/how-ookla-ensures-accurate-reliable-data-2021
https://www.usenix.org/conference/hotos15/workshop-program/presentation/castro
https://www.usenix.org/conference/hotos15/workshop-program/presentation/castro
https://www.govinfo.gov/content/pkg/CFR-2020-title47-vol5/pdf/CFR-2020-title47-vol5-part96.pdf
https://www.govinfo.gov/content/pkg/CFR-2020-title47-vol5/pdf/CFR-2020-title47-vol5-part96.pdf
http://whitepaper.helium.com

[30] Hyojoon Kim and Nick Feamster. 2013. Improving network management with

software defined networking. IEEE Communications Magazine 51, 2 (2013), 114–
119.

[31] Diego Kreutz, Fernando MV Ramos, Paulo Esteves Verissimo, Christian Esteve

Rothenberg, Siamak Azodolmolky, and Steve Uhlig. 2014. Software-defined

networking: A comprehensive survey. Proc. IEEE 103, 1 (2014), 14–76.

[32] Kevin Lai andMary Baker. 2000. Measuring link bandwidths using a deterministic

model of packet delay. In Proceedings of the conference on applications, technologies,
architectures, and protocols for computer communication. 283–294.

[33] Kevin Lai and Mary Baker. 2001. Nettimer: A tool for measuring bottleneck

link bandwidth. In 3rd USENIX Symposium on Internet Technologies and Systems
(USITS 01).

[34] magma [n. d.]. Magma: A modern mobile core network solution. https://

magmacore.org Magma Core Foundation.

[35] B. A. Mah. 2000. pchar: A tool for measuring internet path characteristics.

http://www. employees. org/ bmah/Software/pchar/ (2000).
[36] Bob Melander, Mats Bjorkman, and Per Gunningberg. 2000. A new end-to-

end probing and analysis method for estimating bandwidth bottlenecks. In

Globecom’00-IEEE. Global Telecommunications Conference. IEEE.
[37] Bob Melander, Mats Bjorkman, and Per Gunningberg. 2002. Regression-based

available bandwidth measurements. In International Symposium on Performance
Evaluation of Computer and Telecommunications Systems.

[38] Ralph C Merkle. 1987. A digital signature based on a conventional encryption

function. In Conference on the theory and application of cryptographic techniques.
Springer, 369–378.

[39] David L Mills. 1989. On the accuracy and stablility of clocks synchronized by

the network time protocol in the internet system. In ACM SIGCOMM Computer
Communication Review.

[40] oran [n. d.]. ORAN: Transforming the Radio Access Networks Towards Open,

Intelligent, Virtualized and Fully Interoperable RAN. https://www.o-ran.org

O-RAN Alliance e.V..

[41] Christos Pappas, Raphael M Reischuk, and Adrian Perrig. 2015. FAIR: Forwarding

accountability for Internet reputability. In 2015 IEEE 23rd International Conference
on Network Protocols (ICNP). IEEE, 189–200.

[42] Attila Pasztor and Darryl Veitch. 2002. Active probing using packet quartets.

In Proceedings of the 2nd ACM SIGCOMM Workshop on Internet Measurment.
293–305.

[43] Tao Peng, Christopher Leckie, and Kotagiri Ramamohanarao. 2003. Protection

from distributed denial of service attacks using history-based IP filtering. In IEEE
International Conference on Communications, 2003. ICC’03., Vol. 1. IEEE, 482–486.

[44] Eldad Perahia and Robert Stacey. 2013. Next generation wireless LANs: 802.11 n
and 802.11 ac. Cambridge university press.

[45] Ravi Prasad, Constantine Dovrolis, Margaret Murray, and KC Claffy. 2003. Band-

width estimation: metrics, measurement techniques, and tools. IEEE network 17,

6 (2003), 27–35.

[46] Vinay Joseph Ribeiro, Rudolf H Riedi, Richard G Baraniuk, Jiri Navratil, and Les

Cottrell. 2003. pathchirp: Efficient available bandwidth estimation for network

paths. In Passive and active measurement workshop.
[47] Khondaker M Salehin and Roberto Rojas-Cessa. 2013. Packet-pair sizing for

controlling packet dispersion on wired heterogeneous networks. In 2013 Interna-
tional Conference on Computing, Networking and Communications (ICNC). IEEE,
1031–1035.

[48] Robin Snader and Nikita Borisov. 2009. EigenSpeed: secure peer-to-peer band-

width evaluation.. In IPTPS. 9.
[49] Jacob Strauss, Dina Katabi, and Frans Kaashoek. 2003. A measurement study of

available bandwidth estimation tools. In Proceedings of the 3rd ACM SIGCOMM
conference on Internet measurement. ACM.

[50] Jehan Tremback and Justin Kilpatrick. 2017. Althea: An incentivized mesh network
protocol. White Paper. Althea Network, Inc. https://github.com/althea-net/althea-

whitepaper/blob/master/whitepaper.pdf

[51] Xinlei Yang, Hao Lin, Zhenhua Li, Feng Qian, Xingyao Li, Zhiming He, Xudong

Wu, Xianlong Wang, Yunhao Liu, Zhi Liao, et al. 2022. Mobile access bandwidth

in practice: measurement, analysis, and implications. In Proceedings of the ACM
SIGCOMM 2022 Conference. 114–128.

[52] Xinlei Yang, Xianlong Wang, Zhenhua Li, Yunhao Liu, Feng Qian, Liangyi Gong,

Rui Miao, and Tianyin Xu. 2021. Fast and light bandwidth testing for internet

users. In 18th USENIX Symposium on Networked Systems Design and Implementa-
tion (NSDI 21). 1011–1026.

[53] Ertong Zhang and Lisong Xu. 2015. Capacity and token rate estimation for

networks with token bucket shapers. Computer Networks 88 (2015), 1–11.
[54] Peng Zhou, Rocky KC Chang, Xiaojing Gu, Minrui Fei, and Jianying Zhou. 2015.

Magic train: design of measurement methods against bandwidth inflation attacks.

IEEE Transactions on Dependable and Secure Computing 15, 1 (2015), 98–111.

A Extended Protocol

In this section, we investigate variants of our protocol and variations

in security guarantees when different primitives such as throughput

fairness (§ A.1), digital signatures (§ A.2) and extra side-links (§ A.3)

are present or absent.

A.1 Stronger Primitive: Fairness

We first consider a stronger primitive when using TCP packets as

our challenge flow, whose congestion control algorithm is known to

provide fairness [15]. Fairness guarantees that when 𝑛 challengers

are sending traffic simultaneously with the same rate to a link

with capacity 𝐵, each should have an average rate of 𝐵/𝑛. Under
fairness assumption, we modify the packet-based termination rule

(prover generates the first response on receiving enough packets)

of the protocol to a time-based rule that prover will wait for a fixed

amount of time Δ before sending the first response. On receiving

the first response, challengers stop timer and measure their average

throughput during the measurement period. In this variant, the

final output is the robust sum of throughput reports. In particu-

lar, we take the median throughput from 𝑛 collected reports and

multiply it by (𝑛 − 𝑓) to get the estimated bandwidth. The report

collection phase lasts long enough to make sure all honest reports

get delivered, and the throughput of those who never submit re-

ports is set to a default value 0. Since honest challengers send the

challenge traffic at rate 𝜃0 = 𝜃P/(𝑛 − 𝑓) as is specified in the pro-

tocol, they are guaranteed to share the backhaul bandwidth in a

same rate 𝜃 ′
0
≤ 𝜃0 (it is possible that 𝜃 ′

0
< 𝜃0 when more than 𝑛 − 𝑓

challengers generate traffic).

Security analysis. Since honest challengers share the same through-

put 𝜃 ′
0
≤ 𝜃0, and the median of throughput is bounded by honest

reports, the output bandwidth must be no larger than (𝑛 − 𝑓)𝜃 ′
0
≤

(𝑛 − 𝑓)𝜃0 = 𝜃P, thus the soundness holds. When more than (𝑛 − 𝑓)
challengers send the packets, honest rates will become lower than

𝜃0. But since anyone who send more than 𝜃0Δ will be considered

as malicious, to stay covert corrupted challengers can only send

up to 𝜃0Δ packets during the measurement phase. In other words,

the final bandwidth has accuracy 1 − 𝛽 , which is better than the

accuracy (1 − 2𝛽)/(1 − 𝛽) of the current protocol (Theorem 2) due

to fairness.

A.2 Weaker Primitive: Without Signature

In our main PoB protocol, digital signatures are used to generate

unforgeable packets and resolve disputes between prover and chal-

lengers in terms of the number of packets that are indeed received by

the prover. We now discuss a case where digital signature schemes

are not available, instead, packets are generated by a pseudo ran-

dom generator with a seed picked by each challenger. We describe

the key changes in the protocol below. The protocol guarantees an

accuracy of (1 − 3𝛽)/(1 − 𝛽).
Measurement phase. At the beginning of measurement phase,

challengers generate a seed 𝑆𝑖 and commit it to the verifier. Same

as the main protocol, each challenger generates a sequence of 𝑘

packets with rate𝜃0. The𝑞-th packet from the challenger C𝑖 contains
the sequence number 𝑞 and 𝑞-th random number 𝑅𝑖𝑞 generated

from seed 𝑆𝑖 . The responses are generated in the same way as

Algorithm 1.

13

https://magmacore.org
https://magmacore.org
https://www.o-ran.org
https://github.com/althea-net/althea-whitepaper/blob/master/whitepaper.pdf
https://github.com/althea-net/althea-whitepaper/blob/master/whitepaper.pdf

Verification phase. After the measurements, each challenger re-

veals the seed 𝑆𝑖 to the prover, who can check whether it matches

the pre-committed seed from the verifier. Challengers verify re-

sponses by constructing Merkle tree just as Algorithm 2. The key

change in the verification phase is the termination check. The ver-

ifier accepts the output as long as at least (𝑛 − 2𝑓) packets are
reported as received since 𝑓 corrupted challengers may refuse to

report the actual number of packets received by the prover and

the prover can not prove the inconsistency, though the honest

prover is required to terminate after receiving (𝑛 − 𝑓)𝑘 packets. As

a consequence, the correction factor becomes (1 − 3𝛽)/(1 − 2𝛽).
Security analysis. The soundness proof of the new protocol is

similar to the proof in Theorem 1. The only difference caused by

the new termination rule is that an honest prover may get only (𝑛−
2𝑓)𝑘 reported packets while they actually receive (𝑛 − 𝑓)𝑘 packets

(corrupted challengers all report 0). Different from digital signatures,

random packets generated by pseudo random generator does not

keep unforgeability after the seed is revealed, thus there is no

way to resolve disputes. However, during the measurement phase,

the packets generated by honest challengers are still unforgeable,

therefore even corrupted prover needs to receive at least (𝑛 − 3𝑓)𝑘
packets from the honest challengers to generate responses, which

means the median time Δ′ ≥ (𝑛 − 3𝑓)𝑘𝑏/𝜃P and

𝜃 ′P ≤
(1 − 3𝛽) (𝑛 − 2𝑓)𝑘𝑏
(1 − 2𝛽) (𝑛 − 3𝑓)𝑘𝑏/𝜃P

= 𝜃P

The termination is guaranteed for honest provers due to the

relaxed termination rule with the cost of lower accuracy. When the

prover is uncorrupted, it still waits for (𝑛 − 𝑓)𝑘 packets to gener-

ate the response. Under witholding attacks and the misreporting

attacks, the honest prover can only prove the receipt of (𝑛 − 2𝑓)𝑘
packets. Therefore, the protocol will output

𝜃 ′P ≥
(1 − 3𝛽) (𝑛 − 2𝑓)𝑘𝑏
(1 − 2𝛽) (𝑛 − 𝑓)𝑘𝑏/𝜃P

≥ (1 − 3𝛽)(1 − 𝛽) 𝜃P

So accuracy is reduced to 𝛼 = (1 − 3𝛽)/(1 − 𝛽).

A.3 Relaxed Threat Model

In §4.1, we assume adversary has access to extra high-bandwidth

channels to every end node in the Internet, which enables unavoid-

able rushing attacks. In real world, though, maintaining such a

backdoor network can be prohibitively expensive. A more realis-

tic privilege adversary may have is a high-bandwidth channel to

the network core. This means packets sent by corrupted partici-

pants can reach network core almost instantly, but will be added

to the message queue together with other honest packets and be

transmitted to destination following the order in queue.

Shuffle phase. With the relaxed threat model, we design a new

class of protocols which further improve the accuracy ratio. When

there are no extra links connecting the adversary with other nodes

directly, corrupted challengers are not able to rush packets through

extra links. But information share attack is still possible, to ad-

dress which we design a shuffle phase to involve more than one

challengers into the packets generating process.

We consider a slightly different system where challengers join

a pool with shares and the number of shares of a challenger C𝑖 is
determined by its available bandwidth 𝜃𝑖 and the bandwidth unit 𝜃0.

For example, a challenger with bandwidth 50 Mbps owns 5 shares

in a pool with bandwidth unit 10 Mbps. Each share is assigned

with a unique ID {1, · · · ,𝑈 } (we assume 𝑈 →∞). The Byzantine
fraction of corrupted bandwidth units 𝛽 < 1

3
.

During the shuffle phase, 𝑡 shares are drew from the pool uni-

formly randomly to form a challenger group, we call such a protocol

𝑡-shuffle scheme. Suppose we have 𝑛 challenger groups sampled

from the pool, denoted as C1, · · · , C𝑛 . Specifically, the owner of each
bandwidth unit in the challenger group signs a sequence of packets

using the same method in Algorithm 1, and sends these packets

to the next challenger in the group, who also signs the packets to

get a new sequence of packets. Then in the measurement phase,

the last challenger serves as the sender to forward the sequence of

packets signed by the entire group to the prover.

In this way, as long as one of the challengers in the group is

uncorrupted, the information share attack no longer works since

corrupted challengers can only share partial information about how

to generate packets to the prover. In other words, only those groups

in which all bandwidth units belong to corrupted challengers can

still mount the information share attack. On the other hand, the

multi-signed packets scheme implies that even one corrupted chal-

lenger can withhold the packets. We call a challenger group is good

if all bandwidth units in the group belong to honest challengers,

and a challenger group is bad if all bandwidth units in the group

belong to corrupted challengers. We denote the number of good

and bad groups as random variables 𝐺 and 𝐵. For each challenger

group C𝑖 ,

𝑃 (C𝑖 is good) = (1 − 𝛽)𝑡

𝑃 (C𝑖 is bad) = 𝛽𝑡

Full protocol. After shuffle phase, the last challengers in all groups

forward packets to the prover and start timer for transmission pro-

cess. The time to send each packet is the same as Algorithm 1.

On collecting 𝑐𝑛𝑡 ≥ 𝑔 = (𝜃P/𝜃0)𝑘 packets (𝑔 is a liveness param-

eter), the prover computes the hash of all packets (from different

challengers) as the first response, receiving which challengers will

stop timer and log time. In the verification phase, prover need to

broadcast all received packets to all challengers so that they can

verify the hash and submit reports to the verifier. Then similar

to Algorithm 2, verifier waits for time reports from at least 𝑛 − 𝑓
challengers, and takes the median of RTT Δ′ as time measurement.

The final bandwidth of output is given by the following formula.

𝜃 ′P ←
𝑐𝑛𝑡 · 𝑝 · (𝑔 − 𝑏)

Δ′ · 𝑔 (3)

where 𝑔 is the liveness parameter, 𝑏 is the accuracy parameter, 𝑝

is the packet size.

Security analysis. The parameters defined in equation (3) deter-

mines the security and accuracy of PoB with shuffle. Formally, to

provide soundness we require

Pr(𝜃 ′P > 𝜃P) = Pr

(
𝑔 − 𝑏
𝑔 − 𝐵 > 1

)
= Pr(𝐵 > 𝑏) (4)

to be negligible. Meanwhile, we want to achieve approximate com-

pleteness and maximize the accuracy ratio (𝑔−𝑏)/𝑔, which implies

Pr(𝐺 < 𝑔) should also be negligible to ensure termination. Among

14

0 1000 2000 3000 4000 5000
Total number of challenger groups

0.50

0.55

0.60

0.65

0.70

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(a) 𝑡 = 2

0 1000 2000 3000 4000 5000
Total number of challenger groups

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(b) 𝑡 = 3

0 1000 2000 3000 4000 5000
Total number of challenger groups

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 ra
tio

PoB
PoB-shuffle

(c) 𝑡 = 5

Figure 8: The comparison of accuracy ratio between PoB and 𝑡-shuffle protocols. Byzantine ratio 𝛽 = 1/3, we calculate the best
accuracy ratio under different number of challenger groups 𝑛. The maximal failure probability of PoB-shuffle protocol is
𝜖 = 0.5.

𝑛 challenger group, we have

𝐺 =

𝑛∑︁
𝑖=1

I[C is good]

𝐵 =
∑︁
I[C is bad]

𝐸 [𝐺] = (1 − 𝛽)𝑡𝑛
𝐸 [𝐵] = 𝛽𝑡𝑛

where I is an indicator function. According to Chernoff bounds, for

any 0 < 𝛿𝑔 ≤ 1 and 0 < 𝛿𝑏 ≤ 1, we have

𝑃 (𝐺 < (1 − 𝛿𝑔) (1 − 𝛽)𝑡𝑛) = 𝑃 (𝐺 < 𝑔) < exp(−Θ(𝛿2𝑔𝑛))
𝑃 (𝐵 > (1 + 𝛿𝑏)𝛽𝑡𝑛) = 𝑃 (𝐵 > 𝑏) < exp(−Θ(𝛿2

𝑏
𝑛))

Thus by choosing appropriate 𝑔,𝑏, we get a protocol with accu-

racy

𝛼 =
𝑔 − 𝑏
𝑔

= 1 − (1 + 𝛿𝑏)𝛽𝑡
(1 − 𝛿𝑔) (1 − 𝛽)𝑡

We calculate the case when 𝛽 = 1/3 and set error probability

𝜖 = 0.5. We search for parameters 𝑔,𝑏 to reach optimal accuracy

ratio 𝛼 given different number of challenger groups 𝑛 ∈ [100, 5000].
The results are shown in Figure 8.

15

	Abstract
	1 Introduction
	2 Background and Related Work
	3 The Multichallenger PoB Protocol
	3.1 Problem Statement
	3.2 Protocol Overview
	3.3 Full Protocol

	4 Security Model and Analysis
	4.1 Threat Model
	4.2 Security Properties

	5 Protocol Implementation
	5.1 Practical considerations
	5.2 Implementation
	5.3 Security Analysis of Implemented Protocol

	6 Experimental Evaluation
	6.1 Performance Evaluation
	6.2 Security Evaluation

	7 Conclusion and Discussion
	References
	A Extended Protocol
	A.1 Stronger Primitive: Fairness
	A.2 Weaker Primitive: Without Signature
	A.3 Relaxed Threat Model

